<u>Pre Monsoon Study of Water Quality with reference to Rapid</u> <u>Industrial Development in and around Gandhidham, Kachchh, Gujarat.</u>

Ms. Madhu D. Nathani, Dr. Mrugesh H. Trivedi

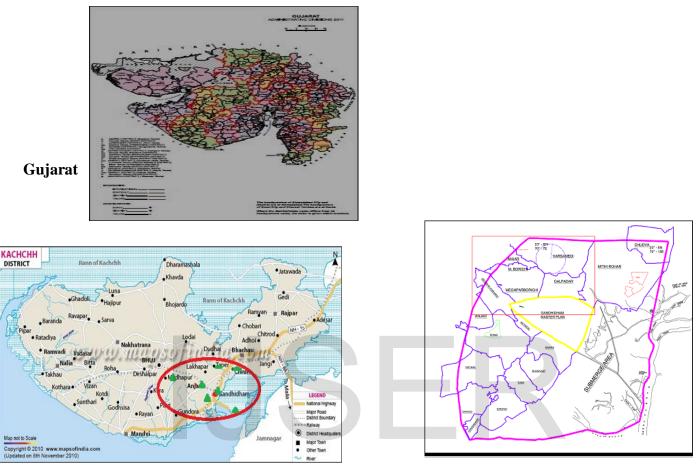
Earth and Environmental Science Department, KSKV Kachchh University, Bhuj, Gujarat

Abstract

The major objective of the present report is to study the physiochemical parameters including heavy metal contamination in surface, ground and potable water in industrial, residential and commercial zone in and around Gandhidham, Kachchh.

To collect the information on the level of contamination 43 water samples were collected from various zones of Kachchh in and around Gandhidham Taluka, Gujarat during March and April 2015 i.e. Pre Monsoon Season. Parameters like pH, electrical conductivity, TDS, salinity, total dissolved solids, total hardness, calcium and magnesium hardness, fluoride, potassium, sulphate , nitrate, silicate chloride and metals like Iron , Cadmium , Cobalt, Zinc ,Manganese , Nickel and Copper were analyzed. Most of the parameters are exceeding the permissible limit recommended by the Indian Standard Specifications for Drinking Water IS: 10500. Analysis of various water quality parameters indicated the contamination of groundwater, Potable water and Surface water in the selected sites.

Keyword: Water quality, ground water, physico-chemical, Gandhidham and Anjar taluka.


Introduction

Water is one of essential compounds for all forms of plants and animals, thus its pollution is generally considered more important than soil and air. Due to its specific characteristics, this liquid bears unique properties. It is the most effective dissolving agent, and adsorbs or suspends many different compounds.

More than one billion people in the world do not have suitable drinking water, and two to three billions lack access to basic sanitation services. About three to five millions die annually from water related diseases.

Surface water (fresh water lakes, rivers, streams) and groundwater (borehole water and well water) are the principal natural water resources. Nowadays one of the most important environmental issues is water contamination. Heavy metals are among the major pollutants of water sources. Despite this, heavy metals are sensitive indicators for monitoring changes in the marine environment. Due to human industrial activities, the levels of heavy metals in the aquatic environment are seriously increasing and have created a major global concern. Some of these metals are essential for the growth, development and health of living organisms, whereas others are non-essential as they are indestructible and most of them are categorized as toxic species on organisms. Nonetheless the toxicity of metals depends on their concentration levels in the environment. With increasing concentrations in environment and decreasing the capacity of soils towards retaining heavy metals, they leach into groundwater and soil solution. Thus, these toxic metals can be accumulated in living tissues and concentrate through the food chain.

Work Area

Kachchh

Gandhidham and area around Gandhidham

Kutch District forms part of the SAURASHTRA Region of Gujarat State having an area of 45652 Sq Km. the Largest in India. It is situated in the South western corner of the Gujarat between 22.44° and 24.41° North Latitude and 78.89° and 71.45° East Longitude.

Temperature fairly remains average in the district. Highest temperature goes up to 44.8 degree centigrade in summer and lowest temperature comes down to 3.7 degree centigrade in winter season. Rainfall is very low in Kutch district as low as 350 to 375 mm during the whole monsoon.

Nearly 75 % of the total minerals of Gujarat State are produced in the Kutch only.

There is no forest in the district as per the definition of forest that zone known as unfocussed length of huge grass reeds spread over the vast land in local terms being called as 'Rakhal'. Though there are forest area which consists of babool thorny trees in nearly 2,87,948 hectares spread over the various talukas of the district. There is no forest produce in the district.

Bhuj town is the district headquarters **for** administration. Besides, there are nine other talukas namely Mandvi, Mundra, Abdasa, Bhachau, Lakhpat, Anjar, Rapar and **Gandhidham.** There are 8 towns and 950

villages in the district. Moreover, six Municipal Corporations in the towns namely Rapar, Bhachau, Anjar, Bhuj, Mandvi, and Gandhidham are functioning as administrators.

Population increase

- Total population of Kachchh District according to 2011 senses is 2,090,313 compared to 1,583,225 of 2001.
- Population Growth for Kachchh District recorded in 2011 for the decade has remained 32.03 percent. Same figure for 1991-2001 decade was 25.40 percent.
- Total Area of Kachchh District was 45,652 with average density of 46 per sq. km.

Kachchh faced a terrible earthquake on 26th January 2001. The scenario in the terms of investment facilities industrial setup norms, increase in population and finally water scarcity and pollution has been changed after the devastation of January 2001.

Sr.No.	Sample site	Туре	Population As per	Population As per	General characteristic of Sample site							
			senses 2001	senses 2011								
1	Anjar	Rural	*	42211	Residential, Agricultural							
2	Shinai	Rural	*	4342	Residential, , Agricultural							
3	Khari Rohar	Rural	*	6851	Industrial							
4	Sangad	Rural	2801	4305	Residential							
5	Devadia	Rural	666	848	Green Belt							
6	Meghpar Kumbharadi	Rural	*		Residential, Industrial							
7	Meghpar Borichi	Rural	1564	17760	Residential, Industrial							
8	Kandla	Urban	*	15780	Residential, Industrial, Port							
9	Varsamedi	Rural	2143	10654	Residential, Industrial							
9	Galpadar	Rural	*	11467	Residential, Industrial							
10	Mithirohar	Rural	*	6749	Industrial, Residential							
11	Kidana	Rural	*	16205	Residential							
12	Bharapar	Rural	*	1462	Industrial							
13	Tuna	Rural	3887	5114	Residential, Industrial							
14	Rampar	Rural	953	1262	Residential, Industrial							
15	Gandhidham / Adipur	Urban	*	197201	Residential							
16	Mathak	Rural	1925	2268	Residential, Agricultural							
17	Antarjal	Rural	*	11247	Residential							

Sample Zones

*Data not available

Sample collection

To examine the extent of the contamination by toxic metals leached from tailings, 20 groundwater, 8 surface water and 15 potable water samples were collected and analyzed from the studied area.

A total of 43 samples were collected from different areas located in and around Gandhidham from 23rd March to 20th April 2015. Samples were collected and preserved in a pre-cleaned, sterilized polyethylene bottles. After collection, the samples were transported to the laboratory within 24 hrs and subjected to analysis for various parameters such as pH, electrical conductivity, salinity, total dissolved solids, total hardness, calcium hardness, magnesium hardness, fluoride, potassium, sulphate, chlorides, magnesium, nitrate, phosphate, sodium and heavy metals – Lead, Cadmium ,Zinc, Iron , Nickel, Copper and Manganese samples were estimated in the Laboratory by using Standard Procedures . Fine grade chemicals were used throughout the study. All the reagents and standards required for the study was prepared using Millipore water.

Analysis methods –

Parameter	Method	Instrument/Apparatus									
рН	Potentiometry	Digital pH/EC meter-									
EC	Conductometry	Model- LabIndia									
TDS	Conductometry	Digital TDS Meter									
Nitrate	Brucine method										
Phosphate	Ascorbic acid										
	method	UV-VIS									
Sulphate	Turbidimetry										
Fluoride	SPADNS Method	Spectrophotometer									
Silicate	Molybdosilicate										
	method										
Sodium		AAS									
Potassium											
Calcium	EDTA Titration										
Magnesium	Method										
Total Hardness											
Free CO2											
Alkalinity	Titrimetric method										
Carbonate and bicarbonate											
Chloride	(Titrimetric)										
Heavy metals (Pb, Cu, Cd,	Solvent extraction	Atomic Absorption									
Ni, Fe, Mn, Ni and Co etc.)	cum pre-	Spectrometer									
	concentration method										

Results and Discussion

								15		13		Ħ											20							_	⊢ ⊢															
8 38	33	6 23	5 18	4 11	3 10	8	6			36	12 34	1 32	27	9	22	7 21	20	5	15	3 13	2 3	1 2	0 41	9 40	39	37	16 35	33	4 30	3 29	2 10	. 12	9 19	8 17	7 14	6 12	9	-	5	4				SN.		
Devadia	Galpadar	Varsamed	Shinai	Kidana	Antarjal	Sangad	Rampar	Kandla	andhidha	Devadia	Chari Rob	Galpadar	ar(Nag-B	Varsamed	Narmada	Tappar	Shinai	Adipur	Antarjal	Kidana	Tuna	Bharapar	andhidha	andhi	Mathak	Devadia	fithi roha	Galpadar	Meghpark	Mini	Anjar	Varsamed	Shinai	Adipur	Antarjal	Kidana	Sangad	Sangad	Kampar	Tuna	Bharapar			Area		
								dla pot	dha potable	idia pot	Roh pot	adar pot	ag-B potable			_	_			_	1a pot	apar potable	idha (andhidhaj(gopalpur						-		1					-	ad G(sch)				pem	Desi			
S			S	S	S	_	s					potable		potable 6		potable						_			G	G	G		G	-	G G			G				_	_	G	C	permitted	TD .	Type		
8.18 4	-	8.66	8.1	8.2	77		9.4		-	7.34	7.9	7.8	75 8	6 82	75	7.11	7.6	11	7.6	7.8	74	17	7.17	7.14	12	~	7.6	-	132	69	6.77	-	-	7.2	7.1		_	83		72	~	5.8	65	PH		
472.5		3091	5270	1336	880.4	27400	4875	2316	1627	1179	4715	3438	801.3		253.8	_	1650	2471	2442	2535	2285		6540	5554	5814 3	1534	5622	5290	5374	2886	1751 Cett	1721		2067		2633	1.02	5022		5301	5357 3			Cond.		
311.8	2889.4	2040	3478	881.76	581.06	18084	3217.5	1528.5	1073.8	778.14	3111.9	2269.1	528.8	8161	167.5	4731.5	1089	1630.8	1611.7	1673.1	1508	3082.2	4316	3665	3837.24	1012.4	3710.5	3491.4	3546.8	1904 7	1155.6	1135	2077.6	1361.2	5091.2	1737.7	3752.42	3314.52	710.72	3498.66	535.62	2000	500	TDS		
4	1129	761	1478	190	172	10740	1247	81	139	S9	685	356	135	408	35	2152	324	520	497	1456	311	970	451	<u>\$</u>	120	6	504	582	905	575	301 10 1	371	783	285	1506	480	1266	1108	486	1116	1204	1000	250	Q		
164	216	261	300	260	167	697	297	170	126	236	334	244	174	269	155	160	334	255	240	264	410	319	969	511	377	468	454	416	823	264	230	264	348	342	1012	289	5 40	369	356	407	490	600	200	Total alk.		
190	565	335	382	157	103	3644	865	358	261	212	917	542	213	666	119	1218	297	465	442	458	348	976	550	370	954	69	337	829	264	543	291	327	751	346	543	375	275	535	534	824	1199	600	300	as L CaCo3	hardnes	
43	245	90	143	90	51	175	50	213	137	140	532	276	134	169	64	155	164	299	290	329	205	376	250	197	301	19	106	361	8	349	163	178	435	191	187	195	83	145	184	302	444	200	75	Ca2+		_
147	320	245	239	67	S	3469	548	145	124	72	385	266	79	170	S:	1063	133	166	152	129	143	200	300	173	653	8	231	468	169	194	128	237	316	155	356	180	192	390	350	522	755	100	30	Mg2+		PRE MONSOON WATER ANALYSIS
5.128	4.212	5.41	12.235	3.84	1.891		3.55	12.34	14.94	10.364	20.553	11.239	17.053	13 729	14.267	5,41	17.82	15.12	13.54	13.41	15.169	27.6	25.49	19.14	24.308	38.361	14.186	22,747	22.895	13 338	20.120 12.127	14.267	74.9	29.01	43.19	18.22	26.46	26.341	28.98	39.276	29.92			+ as SiO2		ONSO
8 5.89		86.366	5 162.62	5.48	1 31.59		84.26		4 5.05	4 25.27		9 80.047	3 13.06	9 52 241	-	325.24	2 32.861	2 60.24	4 292	1 65.3		-	9 189.59	4 123.44	96.89	2: 11	6 281.	17 84.26	5 423.4	8 145 77	200.66 Li	-		1 63.616				-	2	66 91	2 80.89	400	200	02 as SO4 ²⁻		ON W
9	6	66 1.25	62 1.2915	8 2.624	9 1.74		6.56			-	54 16.81	47 3.075	6 7.278	41 3 013	5 3.546	24 2.93	61 6.74	¥ 371	8 7.667	3 5.309	_	2 5.33	59 72.	_	-	3.895	85 210.125		107 8.323		05 3,362			16 1.582				8 5.95		3.69	9 13.12	100	45	²⁻ as NO3-		ATER
_					_		<u>8</u> .					- 1		_		_	_	_	_			-	0.4		-	_	125		-								_	_		_				03- as F		ANAL
0.637	44 62	0.804 4	0.48 8	0.569	0.569 1	257	2	0.318 20	0.24 164	0.219 13	0.85 42	0.52 4	57, 74	84		9385.0	0.368 1	0.49 2	0.54	0.587		0.6	0.464 10(0.699 90	0.386 75	0.343 20	49 943	0.77 731	3.47 9		0.864			0.517	3.29	0.726	1.24	0.72	0.94	89.0	0.66	5	1 2			YSIS
86	5.17	<u>5</u>	97	134	105	1	£.	94.9	164.238	137.74	9.14	439.7 1	172	3	15	68	186	67	284	263	209	180)1.32	5.96	7.62	<u>64.9</u> 0	046	23	958.9		2225 1225	184	296	80	070	34	8	74	87	89	40		200	Na		
5.48		15.4 0	15	21 (2	35	4	.85	_	5.48	5.79	12.28	3.45	17		120	6.3	12 0	12	12	7.6 0	4 (7.6	8.15	7.15	0.462	0.462	~	4.8	12.09	11.88	+		4.4 0	5		72	35	5.4 (2.7	18 0	4	1	K		
0.734	0.13	0.0545	0.836	0.209	0.4	-	0.236	0.42		0.132	0.65	0.657	0.114	_	0.2181	0.836	0.109		0.072	60		0.072	1.35		0.289	0.746	0.65	-	0.096		69.0		8.0	0.0272			0.054	0.127	0.091	0.563	0.1818	1	63	Fe		
0.0004	0.0011	0.024	0.012	0.018	0.009	-	0.016	0.0011	0.00076	0.0011	0.0026	0.0015	0.0005	0.018	0.006	0.036	0.03	0.009	0.012	0.009	0.012	0.024	0.003	0.003	0.003	0.0004	0.0023		0.001	0 001	0.0003	0.018	0.006	0.009	0.02	0.015	0.024	0.054	0.018	0.024	0.216		0.02	N		
3.37	0.467	0	0.048	0.03	0.036	0.0967	0.048	0.077	_	0.0612		0.0099	0.092	0	0	0.048	0	0.024	•	0.012	0.072	0.048	0.368	0.0426	0.107	0.06126	0.0459	0.1148	0.0765	0.1225	1.394	0.024	0.024	0.012	0.012	0.2659	0.048	0.072	0.024	0.024	0.145	0.3	01	Ma		
0.0016	0.004	0	0.007	0.008	0.005	0.027	0.0152	0.0016	0.002	0.0016	0.006	0.0014	0.0004	9800.0	0.0061	0.0148	0.0024	0.004	0.0069	0.002	0.0069	0.021	0.008	0.008	0.0048	0.0016	0.005	0.009	0.004	0 004	0.008	0.004	0.0061	0.0055	0.001	0.007	0.0125	0.0138	0.011	0.014	0.018		0.01ppm	G		
0.0027	0.04	0.114	0.0257	0.009	0.006	0.018	0.005	0.004	0.027	0	0.072	0.008	0.02	0.057	0	0.257	0.086	0.003	0.004	0.003	0.003	500.0	0.053	0.053	0.053	0	0.032	0.064	0.033	0.04	0.026	0.086	0.143	0.002	0.008	0.003	0.005	0.007		0.005	0.007		0.01ppr	Pb		
0.004	0.006	0.0096	0.0257 0.01612	0.0689	0.1034	0.38	0.172		0.004	0.002	0.009	0.0047	0.0078	0.0032	0.0032	0.0096	0	0.086	0.069	0.069	0.137		0.014	0.004	0.006	0.004	0.0129	0.0094	0.003	0.007	0.00		0.0225	0.068	0.138	0.034	0.103	0.334	0.069	0.138	0.38	15	0.05	C		
0.004 0.0546	0.226	0.102	0.105	0.223		0.058	0.157			_	0.165	0.224		_		_	0.148	0.113	0.105	0.102	0.25		0.228		_	_		_	0.256	-+	0.026	-		0.099			0.25	035	0.2	0.159	0.219	10	5	Zn		
5 52.76	62.62	57.99	65.47	38.95	_	-	61.22		-	-			_	_		_	-	_	-	_					-	_	52.92	-	54.68	-	50.12	_	-	28.74	_		_	-		-				NŐ		
very poor	poor	-	-	_	good	8	_						-		good	•	-	_	_	poog	3 not suits		poor					1	-	-	poor poor	-	340.04 not suitable		V	good	B	-	good	1938.14 not suitable	104.76 not suitable					
oor S	-	s	s	S P	S			1 potai	i potai	_	r potai	1 potai	int potal		d potable	able potable			_	i potai	- The second						G		G	-	 	+	able G	d G		d G	able G(im)	r G(sch)		able G	able G			Type		
unfit		unfit	unfit	unfit			unfit	potable unfit	potable unfit	ble untit	potable unfit	potable unfit	potable unfit	hle unfit	ble	ble unfit	ble unfit	ble unfit	ble unfit	potable unfit	ble unfit	potable unfit	unfit	(gopalpur)unfit		untit	unfit				un fit		unfit	unfit		unfit				unfit	unfit			æ	_	
1	1.1	- -						.	1	1	T	•		_		1		~								1						1									-					

Red colour – Beyond Desirable Limit Green colour – Beyond Permitted Limit **pH:** The parameter pH generally indicates the acid or alkaline nature of any solution and usually does not bear any direct impact on consumers. The data revealed that the pH value of Ground water was in a range of 6.5 to 8.6. The maximum range found in the sample 9 and the minimum was observed in the sample 24 and the average of the pH value found was 7.32. The pH value of supplied Potable water by municipalities is 6.82 to 7.8. The maximum range found in the sample 13 and 43 and the minimum was observed in sample 25 and the average of the pH value found was as 7.52. The pH value of Surface water was 7.3 to 9.4. The maximum range found in the sample 6 and the minimum was observed in the sample 33 and the average of the pH value found was as 8.29. The pH value of all the samples does not exceed the recommended limit (6.5-8.5) of BIS.

Electrical Conductivity: In case of electrical conductivity, the value ranged between 298.50 μ S to 3283.50 μ S. The maximum value of EC observed in the sample 22 and the minimum value found in the sample 6 and 7, and the average of the electrical conductivity shown in the range 1574.45 μ S. Around 52% of the sample which exceeds the permissible limits 1400 μ S recommended by BIS.

Total Dissolved Solids: The Total Dissolved Solids ranged between 167.5mg/L to 18084mg/L. The maximum level was found in the sample 8 and the minimum was found in sample 22. Average TDS value is 1056 mg/L. About 95.34% of the sample which exceeds the BIS limit of 500 mg/L because incidence of higher level of TDS is considered to be objectionable.

Total hardness: The total hardness is an important parameter of water quality whether it is to be used for drinking and hardness of such water mainly depends upon the amount of calcium or magnesium salts or both. The maximum total hardness is found to be 3644 mg/L in sample 8 and the minimum is observed as 69 mg/L in the sample 37. The maximum value observed for calcium hardness is 532 mg/L in the sample 34 and the minimum value 19 mg/L found in the sample 37. Similarly the maximum magnesium hardness 3469mg/L was seen in sample 8 and the minimum value 55 mg/L found in the sample of Narmada Water. The average value of Total Hardness, Calcium Hardness and Magnesium Hardness was recorded in the range of 542.3 mg/L, 205.67 mg/L and 338.69 mg/L respectively. Around 72% of the samples were crossing the permissible limit recommended by BIS which 300 mg/L which may be due to presence of carbonate and bicarbonate hardness.

Fluoride The maximum level of fluoride 3.29 mg/L was found in the sample 14 and the minimum value found in the range of 0.219 mg/L in the sample36 .The average values detected as 0.887 mg/L. About 20% of samples are not within the limit 1 mg/L recommended by BIS. Objectionable level of fluoride is found in Ground water samples of Antarjal, Meghpar Borichi, Sangad, Anjar and Mithirohar village and also in potable water supply of Anjar which is mainly used for drinking purpose.

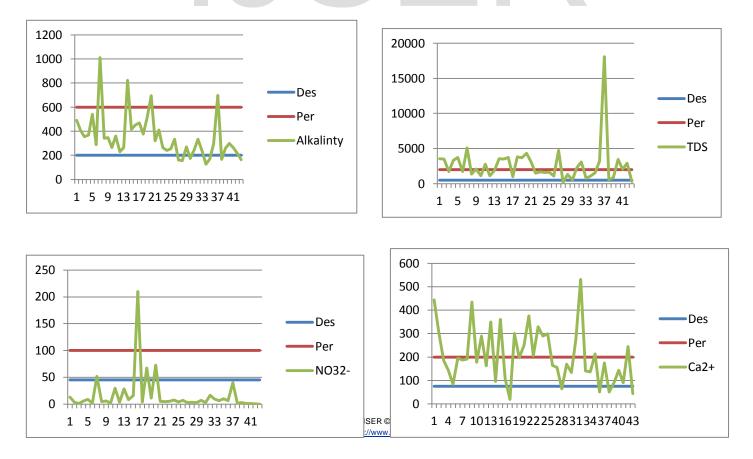
Potassium: Potassium is an essential nutrient for both plant and human life which has its natural occurrence in ground water by weathering of rocks and minerals. The potassium values ranged0.462 mg/L sample no. 35 and 37 and the average potassium concentration was in the range of 13.88 mg/L. As per the study conducted, higher values of potassium were observed as 120 mg/L in the Potable Samples of Tappar Dam. 93% water samples are beyond the desirable limits as per BIS recommendations (1mg/l)

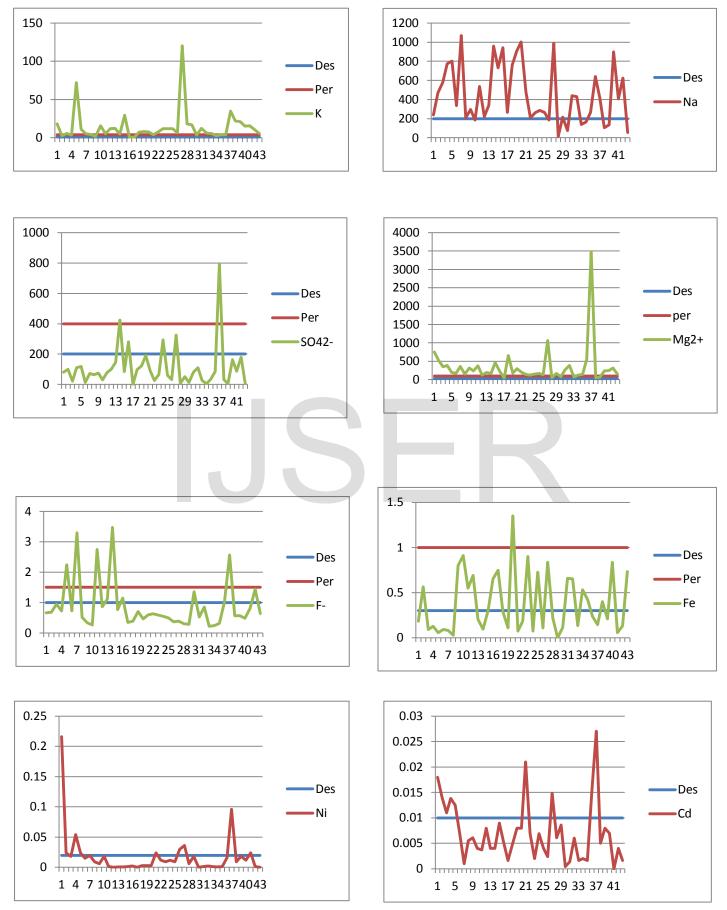
Sodium is an essential nutrient of human life which has its natural occurrence in ground water. The sodium values ranged between 15 mg/L in (SN. 22) Narmada water to 1070 mg/L (SN. 14) and the average sodium concentration was in the range of 448.96 mg/L. 86% water samples exceeds BIS desirable limit (200mg/l)

Lead Concentration is in the range 0 to 0.143 in Shinai ground water (Sample no. 19). In 14 (33%) samples the level of **Pb** exceeded the permitted limit of 0.01 mg/l.

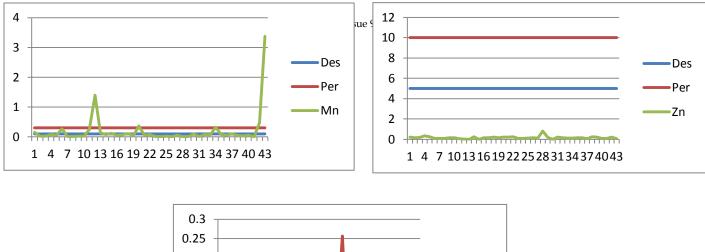
Cadmium :- 9 of the analysed samples (21%) are exceeding desirable limit of cadmium which is 0.01 mg/l , it ranged from 0 in sample no 23 to 0.018 in sample no.1.

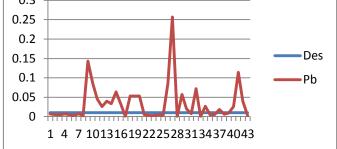
Iron concentration of iron ranged from 0 (Versamedi- SN- 25) to 0.836 in potable supply of Tappar dam (SN-21) and 1.35 in Gandhidham ground water (SN-41). 13 samples (30%) are exceeding desirable limit of 0.3 mg/l. **Iron** is essential elements and is generally considered to be non-toxic below certain levels.


Nickel –minimum observed concentration of nickel 0.0003 in Anjar Ground Water (SN.-28) and maximum was 0.216 in Bharapar(SN. 1). 5 samples (12 %) are beyond permitted level that is 0.02mg/l.

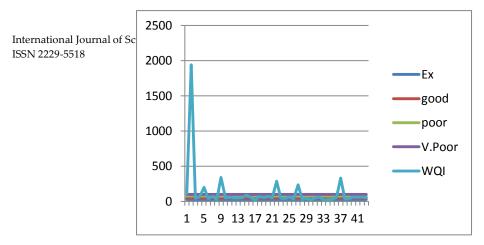

Manganese concentration of Manganese ranged between 0 to 3.37found in Devadia surface water (S. No. 38). 9 samples (21 %) were beyond BIS permitted level 0.1mg/l

Copper is classified as a priority pollutant because of its adverse health effects.16 samples $(37 \ \%)$ were found to exceed permitted limit of 0.05 mg/l. It ranged from 0 to 0.38 mg/l in Bharapar and Sangad ground water (SN.8 and 1).In potable water supplies of Bharapar, Tuna, Kidana, Antarjal and Adipur are having more than desirable limit.


Zinc concentration ranged from 0.0075 mg/l (Anjar potable water supply -SN.27) to 0.082mg/l in Narmada water(SN 22). All the samples are having concentration under permitted limit of 5mg/l


Graphical presentation of Observed Values, desirable (Des) and permitted (Per) values of different parameters.(Concentration of samples on Y axis is taken in mg/ l.)

IJSER © 2015 http://www.ijser.org



Water Quality Index The composite influence of different analyzed water quality parameters are taken into consideration here for calculating the water quality index. Water quality index was done mainly to find the suitability of water source for human consumption.

The WQI is calculated by following the steps used by Brown et.al, 1972.

Calculation of Qn

$$Vs = Std.Value
Vn = Obs Value
Vi = Ideal Value
Qn = 100(Vn-Vi)
(Vs-Vi)
Vi = 0
For pH Vi=7
Calculation Of Wn:
Wn = K
Sn
K = Proportionality Constant
Sn = Std permissible Value of Parameter
Calculation Of K
K = $\frac{1}{\Sigma i = 1}$ $\frac{1}{(S1+S2+S3+\dots+Sn)}$
Calculation Of WQI
WQI = $\sum_{l=1}^{n} QnWn/\sum_{l=1}^{n}Wn$
WQI<25 Excellent, <50 Good, <75 Poor, <100 Very Poor, above 100 not Suitable$$

WQI of 3 samples is below 25, 13 water samples is <50, 17 samples <75, 7 Samples is >100, 3 samples is <100,

Conclusion

Total hardness in water beyond the permitted limits in potable water is accumulated and is a cause of Stone formations.

Fluoride in groundwater has drawn worldwide attention due to its considerable impact on human physiology. Though fluoride is considered essential at very lower concentrations for human beings, whereas higher concentration will lead to health defects.

Lead is not an essential trace element in any organism and has no known biological function. It can cause a variety of harmful health effects and is known as a fatal neurotoxicant.

Nutritional iron deficiency enhances Pb toxicity, raising concern that pregnant women and young children in whom iron deficiency anemia is high, may be more susceptible to Pb toxicity. Pb absorption increases considerably with fasting or in persons whose diet is deficient in calcium, iron, phosphorous or Zinc. Pb is excreted very slowly from the body. Its biological half-life estimated at 10 years, facilitates accumulation in the body. Almost 90% lead is bound to red blood cells. Apart from haemoglobin, cytochrome synthesis, steroid metabolism, membrane integrity, synthesis of active metabolite of vitamin D in renal tubular cells are also affected.

Exposure to high concentrations of manganese over the course of years has been associated with toxicity to the nervous system, producing a syndrome that resembles Parkinsonism. This type of effect may be more likely to occur in the elderly.

Cadmium is regarded as the most serious contaminant of the modern age.Urinary excretion is slow, biological half life can be up to 30 years. Highest concentration is found in kidney and liver. The problem of cadmium toxicity in India is not known. Cadmium affects lungs, kidneys, liver and skeletal system. It binds to sulfhydryl groups, displacing other metals from metalloenzymes, disrupting those enzymes. Cadmium competes with calcium for binding sites on regulatory proteins. Cadmium has been classified as a suspected human carcinogen.

Copper is classified as a priority pollutant because of its adverse health effects. Zinc and iron are essential elements and are generally considered to be non-toxic below certain levels. Excessive concentrations of cobalt can cause death and various compounds of nickel are carcinogenic. These menaces provoke the studies on the monitoring of these heavy metals in this chain being important for protection of public health. Naturally occurring nickel in food may worsen or maintain the hand eczema of nickel-sensitive patients.

As a whole, this study concluded that most of the parameters exceed the permissible limits of BIS standards.

Although according to WQI some samples are good enough to be used for human consumption but high concentrations of one or other parameter makes them unfit for human consumption. All the analysed

samples are unfit as potable water. Narmada water is having all analysed parameter under desirable limits except potassium.

In pre monsoon analysis of various zones in and around Gandhidham it is found that most of the samples are unfit for drinking as per the desired standards.

In various rural and urban areas water used for drinking purpose is purified through Reverse Osmosis method which costs 0.50 to 1.00 rupees depending on the area by community plants, individual home RO system or private plant water suppliers.

Nutritional requirement of each person is 5 liters for drinking, 5 liters for cooking and 35 liters for other uses (hygiene). If the other uses are ignored then also 10 liters of water per person per day is required to sustain healthy life (standard set by WHO).

Calculating the cost of potable water purification in Kachchh district with the population of 2090313 (according to censes 2011) $0.50 \times 365 \times 2090313$ = Rupees 381,482,122.50 (Three hundred eighty one million, four hundred eighty two thousand, one hunded twenty two Rupees fifty Paise) are to be expended just for pure drinking water per annum.

In Gandhidham and area of Anjar adjacent to Gandhidham Population is 3,55,726.

So the cost of only Gandhidham is $0.50 \times 365 \times 355726 = 64,919,995$ (Sixty four million nine hundred nineteen thousand, nine hundred ninety five rupees).

In Narmada water only potassium concentration is beyond desirable limit. Drinking water cost can be cut down to negligible if Narmada water after purification through community purification plants can be directly supplied. A Cation exchange resin, usually in the form of a softener, can remove Potassium. It can also be reduced by 94 - 97% utilizing electro dialysis or reverse osmosis.

It may even restricts the medical costs for the treatment of various diseases caused due to high dissolved salt concentrations and presence of toxic metals like iron , lead etc.

The remedial measures include: i) Rain water harvesting should be encouraged. Excess rain water stored should be directed to recharging wells. ii) Awareness and training programs should be conducted for the NGO's and the local people for the sustainable use and management of groundwater of the region. iv) A short term and long term management action plan should be formulated for the efficient use of groundwater resources and other natural resources after taking into account the population distribution, agricultural activities etc.

Permanent set up of Narmada water canals in Kachchh should be established to avoid effect of Salts and heavy metals in water on industries agriculture and Human health.

Acknowledgement

The authors would like to thank IFFCO, Kandla, Kachchh, Gujarat for providing necessary Laboratory facilities and for the support to conduct this work.

References

- Barbara Luke, Carolyn P. Monteilh- Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study by lithogenic implications
- Central Pollution Control Board (Ministry of Environment and forests)- Status of ground water quality in India- Part-1- a Report (2006-2007)
- D. M. Costa & L. F. Melo & F. G. Martins-Localization of Contamination Sources in Drinking Water Distribution Systems: A Method Based on Successive Positive Readings of Sensors

- Deana M. Manassaram Lorraine C. Backer, Rita Messing, Lora E. Fleming,
- Deepti Mishra, Manish Mudgal, Mohd Akaram Khan, Prabha Padmakaranan ,B Chakardharassessment of Ground Water quality of Bhavnagar region(Gujarat)
- Fardin Boustani, M Hojati, S Ebrahimzadeh-Assessment of Nickel Concentration in Surface
- Hazardous metals and minerals Pollution in India: Sources, toxicity and management a position – August 2011
- M. Dinesh Kumar and Tushaar Shah Groundwater Pollution and Contamination in India:.
- N.C. Kankal, M.M. Indurkar, S.K. Gudadhe and S.R. Wate-Water Quality Index of Surface Water Bodies of Gujarat, India
- N.K. Nagpal- Technical Report water quality guideline for cobalt .- a Report
- N.K.Amaliya and Sugirtha P.Kumar- Evaluation of surface water quality of Kanyakumari district through water quality index assessment.
- P Kotoky, U Tamuli, GC Borah, MK Baruah, BK Sarmah, AB Paul, KG Bhattacharyyad -A Zonation Map of The Karbianglog District, Assam, India
- R. Harichandan & S. Routroy & J. K. Mohanty & C. R. Panda An assessment of heavy metal contamination in soils of fresh water aquifer system and evaluation of eco-toxicity
- Sadhana Chaurasia and Raj Karan- Assessment of water quality index and trophic state index of river Mandakini, India.
- Sajid Farid1, Musa Kaleem Baloch and Syed Amjad Ahmad-Water pollution: Major issue in urban areas
- Sunderrajan Krishnanı, Sanjiv Kumar, Doeke Kampman and Suresh Nagar-Groundwater and well-water quality in Alluvial aquifer of Central Gujarat.